

Advances in the Coreform Cubit DAGMC workflow

Agenda

- Understanding DAGMC workflows with Coreform Cubit
- How DAGMC enables CAD-based geometry in Monte Carlo simulation
- Maximizing the value of converting existing MCNP models to CAD in Coreform Cubit
 - · Visualization
 - Multiphysics
 - Benchmarking DAGMC
 - Preparing CAD for DAGMC simulations in Coreform Cubit
 - manually assigning metadata (see previous webinar)
 - working with imported MCNP models and metadata

Patrick Shriwise Argonne National Laboratory

Matt Sederberg Coreform LLC

Trends in Neutronics Analysis

Streamlined Neutronics

0110 001001101001011110100110

- Neutronics only
- Multiphysics

Motivated by

- Fission: advanced reactor designs
- Fusion: startup ecosystem
- Advanced manufacturing

Direct Accelerated Monte Carlo: DAGMC

Project began at UW – Madison around 2009

A surface mesh representation for Monte Carlo neutronics

- triangle surface tessellations
- embedded topology

0110 001001101001011110100110

Build or Import

Mesh & Export

Coreform

Simulate

Trends in (Fusion) Neutronics Analysis

0110 001001101001011110100110

Coreform Cubit

Advanced meshing for challenging simulations

- CAD import and clean-up
- Semi-automated hex meshing
- Maximum control of mesh properties and quality
- Python and scripting
- Integrated DAGMC workflow

Working Directory: C:/Users/Owner

DAGMC Integration in Coreform

Coreform Cubit

0110 00100110100101111010010

- Dedicated surface meshing parameters
- Meshes are inherently watertight
- Surface mesh visualization
- Integrated export capability in Cubit
- Integrated MCNP input import capability*

DAGMC Ecosystem

- Updated <u>DAGMC Documentation</u>
- DAGMC 2.0 library (🚧)
 - Support for multiple mesh libraries::
 - MOAB, libMesh, MFEM
 - Volumetric mesh particle tracking and tally support
 - Quads/Hexes

*depends on the mcnp2cad project at UW – Madison

DAGMC Model Origins

1. Built in CAD (Solidworks, Cattia, etc.)

1010011

0110 001001101001011

• import as ACIS, STEP, IGES, etc.

2. CSG to CAD Conversion

51-52-53-

85-86-87-88-

81900 8 -0.99565 -61900 tm	up=2.61235E-08
81800 8 -0.99565 -61800 tm	p=2.61235E-08
81700 8 -0.99565 (-61700 9	0997 61701):(90995 -11700 -90997) tmp=2.61235E-08
81600 8 -0.99565 (-61600 9	0997 61601):(90995 -11600 -90997) tmp=2.61235E-08
81500 8 -0.99565 (-61500 9	0997 61501):(90995 -11500 -90997) tmp=2.61235E-08
81400 8 -0.99565 (-61400 9	0997 61401):(90995 -11400 -90997) tmp=2.61235E-08
81300 8 -0.99565 (-61300 9	ener chart land anorth is a chart of
81200 8 -0.99565 -61200 61	2
81100 8 -0.99565 -61100 tm	ic la
c	1
82900 8 -0.99565 -62900 tm	
82800 8 -0.99565 -62800 tm	
82700 8 -0.99565 (-62700 9	
82600 8 -0.98804 (-62600 1	
tmp=2.78469E-08	
82500 8 -0.98804 (-62500 1	2
tmp=2.78469E-08	
82400 8 -0.98804 (-62400 1	
tmp=2.78469E-08	
82300 8 -0.99565 (-62300 9	
82200 8 -0.99565 -62200 62	
82100 8 -0.99565 -62100 62	
с	
83900 8 -0.99565 -63900 tm	
83800 8 -0.99565 -63800 tm	
83700 8 -0.98804 (-63700 1	
tmp=2.78469E-08	
83600 8 -0.98804 (-63600 1	
tmp=2.78469E-08	
83500 8 -0.98804 (-63500 1	
tmp=2.78469E-08	
83400 8 -0.98804 (-63400 1	
tmp=2.78469E-08	
83300 8 -0.98804 (-63300 1	
tmp=2.78469E-08	
83200 8 -0.99565 -63200 tm	
83100 8 -0.99565 -63100 63	
c	

coreform

DAGMC Demonstration

ICSBEP¹ Model: SUB-HEU-MET-FAST-001

Zero Power Physics Reactor (ZPPR-20E)

Subcritical assembly built at INL in 1969

• HE Uranium Nitride

0110 001001101001011110100110

- Lithium
- Beryllium Oxide
- Niobium
- Rhenium
- Zirconium
- Stainless Steel
- Lithium (coolant)

1- International Handbook of Evaluated Criticality Safety Benchmark Experiments / Nuclear Energy Agency. - Paris: OECD Nuclear Energy Agency, 2016. (NEA;7328)

coreform

DAGMC Demonstration

ICSBEP¹ Model: SUB-HEU-MET-FAST-001

1. Model import

0110 001001101001011110100110

- 2. Metadata prep (w/ scripting)
- 3. Mesh
- 4. Export a DAGMC model
- 5. Execute a run with OpenMC
 - a. DAGMC Universe Docs & Example

1- International Handbook of Evaluated Criticality Safety Benchmark Experiments / Nuclear Energy Agency. - Paris: OECD Nuclear Energy Agency, 2016. (NEA;7328)

Coreform

MCNP Imports (Expectations & Optimizations)

• CSG consists of regions defined by the Boolean combinations of halfspaces of analytic surfaces

0110 001001101001011110100110

- Conversion to CAD requires the creation of these halfspaces as volumes in Cubit and Boolean combinations of the resulting volumes
- Every operation requires an update of user-facing information in the GUI

(visualization and rendering)

• Geometries with repeated features can be particularly onerous to convert Some optimizations:

1. Apply the following settings in the console

echo off		
undo off		
warning off		
set default autosize off		
journal off		
graphics off		
info off		

2. Import models through the Python module

<pre>import cubit</pre>	
<pre>cubit.init('')</pre>	
<pre>cubit.cmd('import mcnp "path/to/mcnp/input.i"')</pre>	
<pre>cubit.cmd('save cub5 "input.cub5"')</pre>	

Links and References

Cubit

- Update the group names of an old DAGMC Model
- Transfer group metadata to Cubit materials and block assignments
- <u>Compute surface mesh accuracy</u>*

<u>DAGMC</u>

- <u>PyDAGMC</u> a Python API for modifying DAGMC models
- New Docs

0110 001001101001011110100110

<u>OpenMC</u>

- <u>MCNP adapter tool for OpenMC</u>
- <u>Mixed CSG and DAGMC geometry example</u>

*courtesy of Greg Vernon

Questions?

To try this workflow:

Request a free trial of Coreform Cubit to test out the DAGMC workflow Ask questions at forum.coreform.com