
Geometry import to LS-DYNA

Livermore Software Technology Corporation

1 Introduction

The support of novel computer-aided geometric descriptions forming a potential future
basis of isogeometric analysis in LS-DYNA is discussed in the present document. In
particular, the design of a new keyword as well as the structure of the geometry input
file meant to replace the current method using the *INCLUDE TRANSFORM keyword
is outlined. It is also aimed to generalize the geometric description as well as to focus
on compressed storage in order to enable the run of larger and more complex examples.

The remaining part of the document is structured as follows. The new LS-DYNA
keyword is introduced in section 2. Supported geometry file formats are discussed in
section 3 in greater depth.

2 LS-DYNA keyword

The *IGA INCLUDE {OPTION1} {OPTION2} keyword is introduced to import geom-
etry files to LS-DYNA with NURBS or BEZIER as supported first optional arguments
and blank or TRANSFORM as second optional argument, i.e.

Card 1 1 2 3 4 5 6 7 8

Variable FILENAME

Type C

Card 2 1 2 3 4 5 6 7 8

Variable FTYP PID FORM MASS INT NISR NISS NIST

Type I I I I I I I I

Default none none 0 0 0 none none none

Card 3 1 2 3 4 5 6 7 8

Variable
ID-

NOFF
IDE-
OFF

ID-
POFF

FC-
TLEN

TRA-
NID

Type I I I F I

1



Variable Description

FILENAME Name of file to be included.

FTYPE File type.
1 - ASCII
2 - LSDA

PID Part ID.

FORM Element formulation type.

MASS Mass matrix lumping scheme.

INT Lamina integration rule.

NISR Number of interpolation elements in the r-direction.

NISS Number of interpolation elements in the s-direction.

NIST Number of interpolation elements in the t-direction.

IDNOFF Offset node ID.

IDEOFF Offset element ID.

IDPOFF Offset part ID.

FCTLEN Length transformation factor.

TRANID Transformation ID.

Remarks:

(1) The above keyword structure is valid for any of the options, however, the use of
*IGA INCLUDE NURBS keyword is not detailed further in this document.

(2) One file per *IGA INCLUDE keyword. The file, however, may contain multiple
patches with the same part ID, element formulation, mass lumping scheme, as well
as lamina integration rule as defined on Card 2.

(3) Card 2 is meant to be used with both options. This card contains non-geometrical
information also used in other, e.g. *ELEMENT SHELL NURBS PATCH or *EL-
EMENT SOLID NURBS PATCH, keywords.

(4) The optional card 3 contains all fields from the *INCLUDE TRANSFORM key-
word relevant for geometric entities. Offsetting element, node, or patch IDs will
only make a difference, i.e. be useful, if Bézier and standard finite element meshes
are combined in a model.

3 Geometry file formats

The key differences with respect to the previous format are as follows:

(1) Reduced storage. Bézier extraction operators are not stored in their full form hence-
forth. In what follows, we distinguish between tensor product, non-tensor product,
and mixed elements. A d-dimensional tensor product element is defined by d lo-
cal knot vectors. A non-tensor product element is defined by a set of coefficient

2



vectors essentially representing a row in the Bézier extraction operator. Elements
with mixed tensor and non-tensor product structure, e.g. prism cf. section 3.1,
may be defined using a combination of local knot and coefficient vectors.

(2) Sorted input. Local knot and coefficient vectors are collected into sorted blocks
comprised in a library. Element definitions use local knot and/or coefficient vector
identifiers, i.e. pointers, to the entries of the library. Furthermore, a coefficient
vector may be stored using either dense or sparse storage format. Noting that
the latter may be beneficial as the element dimension increases but complicate
the export of the data, the choice to invoke different storage formats is left to the
pre-processor. Assuming for instance that tensor product elements are used to
define most part of the discretization and non-tensor product elements occur in
the vicinity of a few extraordinary points only, it might be easier to export the
data in dense format only.

(3) Format and precision. In order to ensure consistency with the binary input, cf.
section 3.2, a fixed input format is proposed using (due to the relative indexing)
short integers, i.e. i8, and double precision reals of the form 1pe24.16. Conse-
quently, each line may contain up to ten integers or five reals yielding lines of up
to 80 or 120 character long, respectively.

For brevity, local knot vectors are also referred to as coefficient vectors henceforth.

3.1 ASCII format

The following structured input has to be written for each patch separately, i.e.

BLOCK 1 - PATCH
PAID, PADIM, NN, NE, NCV, WFL
Total number of lines: 1.

BLOCK 2 - NODES
For each node i = 1, . . . ,NN:
Xi, Yi, Zi, Wi
Total number of lines: NN.

BLOCK 3 - ELEMENTS
NEB
For each element sub-block j = 1, . . . ,NEB:
NEj, NNj, NCVj
For each element in sub-block j:
ETYP, PR, PS, PT
N1, N2, ... , Nk (as many lines needed)
CVID1, CVID2, ..., CVIDl (as many lines needed)
Total number of lines: 1+NEB+

∑NEB
j=1 [1+ceil(NNj/10)+ceil(NCVj/10)].

3



BLOCK 4 - COEFFICIENT VECTORS
NDCVB, NSCVB
For each dense sub-block d = 1, . . . ,NDCVB:
NCVd, NCVCd
For each sparse sub-block s = 1, . . . ,NSCVB:
NCVs, NCVCs
For each coefficient vector in dense sub-block d:
CVID
CVC1, CVC2, ..., CVCd (as many lines needed)
For each coefficient vector in sparse sub-block s:
CVID
CVI1, CVI2, ..., CVIs (as many lines needed)
CVC1, CVC2, ..., CVCs (as many lines needed)
Total number of lines: 1+NDCVB+NSCVB+∑NDCVB

d=1 [1+ceil(NCVCd)/5]+
∑NSCVB

s=1 [1+ceil(NCVCs)/10+ceil(NCVCs)/5].

where

Variable Description

PAID Patch ID.

PADIM Patch dimension, i.e.
1 - Beam.
2 - Shell.
3 - Solid.

NN Number of nodes/control points.

NE Number of elements.

NCV Number of coefficient vectors.

WFL Control weight flag.

Xi, Yi, Zi Nodal coordinates of the ith node.

Wi Nodal weights of the ith node.

NEB

Number of sorted element sub-blocks, i.e. based on the
number of nodes and coefficient vectors used in their
definition elements are sorted into j = 1, . . . ,NEB
sub-blocks.

NEj Number of elements in the jth sub-block.

NNj
Number of nodes defining an element in the jth
sub-block.

NCVj
Number of coefficient vectors defining an element in the
jth sub-block.

ETYP Element type.
0 - Cube (tensor product)
1 - Cube (non-tensor product)

4



2 - Simplex (non-tensor product)
3 - Prism (tensor product in one direction only)

PR Polynomial degree in the r-direction.

PS Polynomial degree in the s-direction.

PT Polynomial degree in the t-direction.

Nk
Node IDs defining the element connectivity,
k = 1, . . . ,NNj in the jth sub-block.

CVIDl
Coefficient vector IDs defining the element,
l = 1, . . . ,NCVj in the jth sub-block.

NDCVB
Number of sorted coefficient vector blocks using dense
storage format, i.e. the coefficient vectors are stored into
d = 1, . . . ,NDCVB sub-blocks based on their length.

NSCVB

Number of sorted coefficient vector blocks using the
sparse storage format, i.e. the coefficient vectors are
stored into s = 1, . . . ,NSCVB sub-blocks based on their
length.

NCVd (NCVs)
Number of dense (sparse) coefficient vectors in the dth
(sth) sub-block.

NCVCd (NCVCs)
Number of dense (sparse) coefficient vector components
in the dth (sth) sub-block.

CVID Coefficient vector ID.

CVCm (CVCn)
Coefficient vector components using the dense (sparse)
storage format, m = 1, . . . ,NCVCd (n = 1, . . . ,NCVCs)
in the dth (sth) sub-block.

CVIn
Coefficient vector index, n = 1, . . . ,NCVCs (sparse
format only).

Remarks:

(1) Beam elements, i.e. PADIM=1, are currently not supported in LS-DYNA.

(2) The element dimension is the same as the part dimension, i.e. a shell patch should
not contain any three-dimensional or solid elements and vice versa.

(3) Element and node IDs are local/relative to the patch and therefore are not defined
at input.

(4) For the sake of generality, a non-tensor product cube (ELTYP=1) may also be used
to define tensor product cubes (ELTYP=0). This may be useful in case local knot
vectors can not be retrieved from Bézier extraction operators in higher dimensions.

3.2 Binary format

In addition to the ASCII format outlined in the previous section, we intend and in most
industrial cases prefer to support binary storage of the geometry using the open LSDA

5



format and API developed and maintained by LSTC. Invoking the binary format will
further reduce storage requirements, speed up I/O. The data should be written using
the following path keyword/[option]/patch[i8.8]/ where [option] is either
isoshell or isosolid for two and three-dimensional patches, respectively.

Bézier extraction was originally introduced to enable the analysis of unstructured
spline discretizations in existing finite element codes. As a consequence, topolog-
ical information relevant for models defined fully or partially by virtue of Bézier
extraction, e.g. element adjacency for a single patch or interface between multiple
patches including for instance a hat stiffened shell, is lost. The present document
wasn’t aimed to address the storage of topological information and the authors
are not even convinced that such data should be part of the data structure at all.

6


