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Spline-based simulation papers since 2005
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Vision of isogeometric analysis (IGA):
A single source of truth for design and analysis
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Using highly accurate spline-based FEA

* FEA mesh data
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Nastran

* Next-gen CAD data
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Promise of smooth spline-based FEA
Better simulation through better geometry
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change to your
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Better stress accuracy: 16x fewer elements for ~1% error

N
€/ coreform FEA 256 elements Splines: 16 elements



Splines are more robust for large deformations

Degree 1 2
# of nodes 160 160

Timesteps 144 209
completed

(e FEA Splines
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U-splines: next-gen CAE/CAD technology

Traditional
engineering
design

Next-gen
design and
analysis

Traditional
engineering
analysis
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Analysis-suitable geometry
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Non-uniform topology Non-uniform degree Non-uniform smoothness

p=2

Partition of unity
Compactly supported
Positive

Linearly independent
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Better accuracy with less time and effort

Workpiece
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Better accuracy with less time and effort
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Better accuracy with less time and effort

225,000 small elements required to
capture curvature with FEA!
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Better accuracy: 50x faster SOOx fewer elements

Elements 225,000

Total 384 8
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Bézier extraction: Equivalence between
Bézier and B-spline representations
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*IGA_INCLUDE_BEZIER

Purpose: import complex spline data into LS-DYNA

e Improvement over old Bezier extraction keyword
* Allows for simplex and prism elements
e More efficient data storage

Current status

e Still under active development

* Beta version: scheduled for summer of 2019
e Public availablity: scheduled for Rev 12 of LS-DYNA Keyword Manual
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*IGA INCLUDE BEZIER
format

 Patch data

* Geometry

* Elements descriptions
 Coefficient vectors
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*|GA INCLUDE BEZIER features:

1. Increased explicit time step size

2. Import of solid spline models

3. Import of T-spline CAD models

4. Smoothing of unstructured FEA meshes via U-splines

5. Future possibility of IGA assembly models in LS-DYNA
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The central difference method

Evolution Through Time
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At?
dn_|_1 = dn + Atvn + 7an

Vpt+1l = Vp + 7(3% + an—l—l)
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n = Time step number
At = Time step size

d = Displacement

v = Velocity

a = Acceleration
M = Mass matrix

_ Residual, note that R,, 11
— is independent of a, 11
h
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= Maximum discrete frequency



1D vibrating rod

82
L=E=p=1 W—i—wu—()
Uu
3
u(0) =0
Exact modes:
U, = sin(nmx)
Wy, = NT
forn=1,2,3,4, ...
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Lagrange
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n = Mode number
N = Number of DOFs

wy, = Exact nth frequency

wﬁ = Discrete nth frequency

Raising continuity helps most of the
spectrum, but not the highest
frequency
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The challenge of increasing degree

Increase degree

Lagrange
Multi-patch NURBS
T-splines

etc.

Decrease time step
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U-splines can uniguely increase the time step
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NURBS U-splines
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Time step example: v-notch problem

Crack formation

coreform Crack after fracture



Optimized U-Spline basis
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Optimized U-Spline in LS-DYNA via *IGA_INCLUDE_BEZIER

bl i




Lower simulation costs Smooth fillet captured!

FEA U-splines
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Time step: 1.35x 107/ Time step: 2.18 x 10”7
‘!G}co,eform 60% larger time step!




Superior explicit dynamics

Basis Type Time Step (LS-DYNA)

Linear 1.35 x 107/
Multipatch NURBS 1.25 x 107
U-Spline 2.18 x 10”7

60% larger time step than linear!
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2. Import solid spline models

U-spline solid spring model

Coreform Process




3. Import T-spline CAD model
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3. Import T-spline CAD model
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4. Smooth unstructured FEA mesh via U-splines




4. Smooth unstructured FEA mesh via U-splines

\
Y&/ coreform  Automatic conversion of solid BREP to U-spline surface. Retopology by Trellis.
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4. Smooth unstructured FEA mesh via U-splines
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5. Future possibilities: IGA assembly models

in LS-DYNA \ ;
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IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline,
smooth element
boundaries to be C1
where possible

3. Automatically translate
material properties,
element types,
connections

a. Redefine applied loads for
IGA-suitability

s. Run simulation

Py N
0":"0
Loz coreform




P1, CO everywhere:

IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline,
smooth element
boundaries to be C1
Where pOSSibIe Elements are CO everywhere.

3. Automatically translate P2, C1 where possible:
material properties,
element types,
connections

a. Redefine applied loads for
IGA-suitability

s. Run simulation

Increased smoothness in
guadratic mesh
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IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline, N
smooth element ————
boundaries to be C1
where possible

3. Automatically translate
material properties,
element types,
connections

a. Redefine applied loads for
IGA-suitability

s. Run simulation

m— continuity: -1
= continuity: 0
m— continuity: 1

""““\‘ Section of the original linear mesh Section of the smoothed U-spline model
‘~ o "
S coreForm Another view of the smoothness (continuity) of the U-spline model



IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline,
smooth element
boundaries to be C1
where possible

3. Automatically translate
material properties,
element types,
connections

a. Redefine applied loads for
IGA-suitability

s.  Run simulation
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List of cards in the Coreform IGA assembly



IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline,
smooth element
boundaries to be C1
where possible

3. Automatically translate
material properties,
element types,
connections

s. Redefine applied loads for
IGA-suitability

s.  Run simulation
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‘:',“:;_ Loads and boundary conditions were assigned directly to the geometry

Wz coreform instead of to nodes for improved accuracy.



IGA workflow

1. Import LS-DYNA assembly

2. Convert linear mesh to
Degree 2 U-spline,
smooth element
boundaries to be C1
where possible

3. Automatically translate
material properties,
element types,
connections

a. Redefine applied loads for
IGA-suitability

s.  Run simulation
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We ran the simulation using both Coreform Analyze (IGA) and LS-DYNA (FEA). While the codes use different

"‘\\‘ bases and formulations, the max displacements were within 3% of each other, a strong validation that the
([ O underlying physics are correct.
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Want to learn more?

|IGA short course IGA 2019
e Theory and application e Annual IGA conference
e Coreform offices in Utah, USA e Munich, Germany
e August 21-22, 2019 e September 18-20, 2019

Want to use our beta software?

Come talk with me.

Love IGA?
Come be team member #17 at Coreform.
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Thank you!

Matthew Sederberg, matt@coreform.com




