

Isogeometric analysis using the *IGA_INCLUDE_BEZIER keyword in LS-DYNA

Matthew Sederberg, Coreform CEO

Agenda

- Value of *IGA_INCLUDE_BEZIER
 - Isogeometric analysis
 - Unstructured splines
 - Larger explicit time steps
- How to use *IGA_INCLUDE_BEZIER
- Future possibilities

Spline-based simulation papers since 2005

USA - 502

Austria - 105

Netherlands - 68

Wales - 41

Canada - 26

China · 332

Iran - 101

Australia - 67

Switzerland - 36

Germany - 315

Spain - 94

Belgium · 64

Scotland - 41

Italy - 265

Japan - 87

Saudi Arabia - 53 | India - 52

Poland + 28

S Korea - 183

England - 83

Luxembourg - 27

Vietnam - 118

France - 78

Norway - 45

Singapore - 27

Vision of isogeometric analysis (IGA): A single source of truth for design and analysis

Using highly accurate spline-based FEA

• FEA mesh data

Next-gen CAD data

Promise of smooth spline-based FEA Better simulation through better geometry

Better accuracy in less time

Increased robustness

Lower simulation costs

Minimal change to your workflow

Greatly improved by *IGA_INCLUDE_BEZIER

Better stress accuracy: 16x fewer elements for ~1% error

Splines: 16 elements

Splines are more robust for large deformations

FEA	Spline
1	2
160	160
144	209
	1 160

FEA

Splines

U-splines: next-gen CAE/CAD technology

Analysis-suitable geometry

Non-uniform topology

Non-uniform degree

Non-uniform smoothness

- Partition of unity
- Compactly supported
- Positive
- Linearly independent

Better accuracy with less time and effort

Project shared by permission, funded by Honeywell

Better accuracy with less time and effort

Project shared by permission, funded by Honeywell

Better accuracy with less time and effort

225,000 small elements required to capture curvature with FEA!

Project shared by permission, funded by Honeywell

Better accuracy: 50x faster, 500x fewer elements

	FEA	U-Splines
Elements	225,000	500
Total	384	8
compute		
hours		
coreform		

Bézier extraction: Equivalence between Bézier and B-spline representations

*IGA_INCLUDE_BEZIER

Purpose: import complex spline data into LS-DYNA

- Improvement over old Bezier extraction keyword
- Allows for simplex and prism elements
- More efficient data storage

Current status

- Still under active development
- Beta version: scheduled for summer of 2019
- Public availablity: scheduled for Rev 12 of LS-DYNA Keyword Manual

*IGA_INCLUDE_BEZIER format

- Patch data
- Geometry
- Elements descriptions
- Coefficient vectors

*IGA_INCLUDE_BEZIER features:

- 1. Increased explicit time step size
- 2. Import of solid spline models
- 3. Import of T-spline CAD models
- 4. Smoothing of unstructured FEA meshes via U-splines
- 5. Future possibility of IGA assembly models in LS-DYNA

The central difference method

Evolution Through Time

$$\mathbf{M}\mathbf{a}_{n+1} = \mathbf{R}_{n+1}(\mathbf{d}_{n+1})$$
$$\mathbf{d}_{n+1} = \mathbf{d}_n + \Delta t \mathbf{v}_n + \frac{\Delta t^2}{2} \mathbf{a}_n$$
$$\mathbf{v}_{n+1} = \mathbf{v}_n + \frac{\Delta t}{2} (\mathbf{a}_n + \mathbf{a}_{n+1})$$

Stability Condition

$$\Delta t \le \frac{2}{\omega_{max}^h}$$

n = Time step number

 $\Delta t = \text{Time step size}$

 $\mathbf{d} = \text{Displacement}$

 $\mathbf{v} = \text{Velocity}$

 $\mathbf{a} = Acceleration$

 $\mathbf{M} = \text{Mass matrix}$

 $\mathbf{R} = \frac{\text{Residual, note that } \mathbf{R}_{n+1}}{\text{is independent of } \mathbf{a}_{n+1}}$

 $\omega_{max}^h = \text{Maximum discrete frequency}$

1D vibrating rod

$$L = E = \rho = 1$$

$$\frac{\partial^2 u}{\partial x^2} + \omega^2 u = 0$$

Exact modes:

$$u_n = \sin(n\pi x)$$

$$\omega_n = n\pi$$

for $n = 1, 2, 3, 4, ...$

Lagrange

n = Mode number

N =Number of DOFs

 $\omega_n = \text{Exact } n \text{th frequency}$

 $\omega_n^h = \text{Discrete } n \text{th frequency}$

Raising continuity helps most of the spectrum, but not the highest frequency

NURBS

The challenge of increasing degree

Increase degree

Decrease time step

- Lagrange
- Multi-patch NURBS
- T-splines
- etc.

U-splines can uniquely increase the time step

Time step example: v-notch problem

Optimized U-Spline basis

Optimized U-Spline in LS-DYNA via *IGA_INCLUDE_BEZIER

Lower simulation costs

FEA

Time step: 1.35×10^{-7}

Smooth fillet captured!

U-splines

Time step: 2.18 x 10⁻⁷

60% larger time step!

Superior explicit dynamics

Basis Type	Time Step (LS-DYNA)
Linear	1.35 x 10 ⁻⁷
Multipatch NURBS	1.25 x 10 ⁻⁷ Smaller than linear FEA
U-Spline	2.18 x 10 ⁻⁷

60% larger time step than linear!

2. Import solid spline models

3. Import T-spline CAD model

3. Import T-spline CAD model

4. Smooth unstructured FEA mesh via U-splines

4. Smooth unstructured FEA mesh via U-splines

coreform Automatic conversion of solid BREP to U-spline surface. Retopology by Trellis.

4. Smooth unstructured FEA mesh via U-splines

5. Future possibilities: IGA assembly models in LS-DYNA LS-DYNA Assembly **FEA U-spline Assembly** coreform Coreform Analyze

1. **Import** LS-DYNA assembly

- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- 4. Redefine applied loads for IGA-suitability
- 5. **Run** simulation

- Import LS-DYNA assembly
- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- Redefine applied loads for IGA-suitability
- 5. **Run** simulation

iements are co everywhere.

Increased smoothness in quadratic mesh

P2, C1 where possible:

P1, C0 everywhere:

- Import LS-DYNA assembly
- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- Redefine applied loads for IGA-suitability
- 5. **Run** simulation

Another view of the smoothness (continuity) of the U-spline model

Section of the smoothed U-spline model

Section of the original linear mesh

- Import LS-DYNA assembly
- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- 4. Redefine applied loads for IGA-suitability
- 5. **Run** simulation

- ı. Import LS-DYNA assembly
- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- Redefine applied loads for IGA-suitability
- 5. **Run** simulation

Loads and boundary conditions were assigned directly to the geometry instead of to nodes for improved accuracy.

- i. Import LS-DYNA assembly
- 2. Convert linear mesh to Degree 2 U-spline, smooth element boundaries to be C1 where possible
- Automatically translate material properties, element types, connections
- Redefine applied loads for IGA-suitability
- 5. Run simulation

We ran the simulation using both Coreform Analyze (IGA) and LS-DYNA (FEA). While the codes use different bases and formulations, the max displacements were within 3% of each other, a strong validation that the underlying physics are correct.

Want to learn more?

IGA short course

- Theory and application
- Coreform offices in Utah, USA
- August 21-22, 2019

IGA 2019

- Annual IGA conference
- Munich, Germany
- September 18-20, 2019

Want to use our beta software?

Come talk with me.

Love IGA?

Come be team member #17 at Coreform.

Thank you!

Matthew Sederberg, matt@coreform.com